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Abstract

A coupled model for the study of hollow, compound optical fiber drawing processes that accounts for the heat transfer in the preform and
fiber and for the motion of the gases surrounding the preform and fiber by means of two-dimensional equations, employs a net radiative
model for the radiative heat exchanges amongst the preform, fiber, irises and furnace walls, and uses asymptotic one-dimensional equation
for the geometry, axial velocity component and temperature along the fiber for small Biot numbers is presented. It is shown that the coupled
model predicts that radiative heat exchanges are about three times larger than forced convection effects, and free convection is not importan
It is also shown that the fiber’'s geometry, axial velocity and temperature predicted by the coupled model are in remarkable good agreement
with those obtained with only the one-dimensional model for hollow, compound fibers using a properly chosen constant Biot number. The
results of the one-dimensional model for hollow, compound fibers show that, as the heat transfer losses from the fiber increase, the fiber’s
dynamic viscosity increases, the fiber exhibits a strong necking phenomenon and the fiber's axial velocity increases rapidly from its value at
the die’s exit to a constant value downstream and then remains constant. For the boundary conditions considered in this paper, it is shown tha
the activation energies of the viscosity laws for the inner and outer materials of the hollow, compound fiber do not have very strong effects on
the fiber's geometry, axial velocity component and temperature, whereas the fiber's solidification point moves towards the die as the thermal
Péclet number is decreased. It is also shown that the pre-exponential factor and activation energy of the dynamic viscosity law do not play a
key role in determining the fiber's geometry and temperature for the conditions analyzed in this paper.
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1. Introduction In addition, depending on the cladding configuration, holey
fibers can display anomalous dispersion throughout the visi-

In recent years, holey or microstructured fibers have beenble spectrum.
developed for optical applications [1]. The cross-section of ~ The presence of air holes in optical holey fibers makes
these fibers contains an array of holes running along thethem very useful in applications ranging from nonlinear de-
fiber length, and these fibers guide light due to the effec- Vices to high-power delivery systems.
tive refractive index difference between the solid core and  Another type of optical holey fibers is the photonic
the cladding. These fibers may be made of a single mater-Pandgap fiber [2,3] which guides the light by making use
ial, such as pure silica, and their effective index contrast can ©f the photonic bandgaps that occur in a periodic structure.

be a strong function of the light guided through the fiber. Microstructured fibers also include atom-guiding fibers [4]
where metal wires are inserted into four electrodes in the

fiber and, by running currents along these wires, a magnetic

T A preliminary version of this paper was presented at CHT-04: An potential can be established. This potential can then guide
ICHMT International Symposium on Advances in Computational Heat atoms

Transfer, April 2004, G. de Vahl Davis and E. Leonardi (Eds.), CD-ROM Holev fib I fact dbvd .
Proceedings, ISBN 1-5670-174-2, Begell House, New York, 2004 oley nibers are usually manuractured by drawing a pre-

* Tel.: +34952131402: fax: +34 952132816. form in a furnace by conventional fiber-drawing processes.
E-mail addressjirs@Icc.uma.es (J.1. Ramos). The preform can be made in several ways, including the
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Nomenclature
A cross-sectional area X axial coordinate measured from the furnace top
B leading-order axial velocity component, function wall or from the furnace exit
of x and: u axial velocity component
Bi Biot number v radial velocity component
C funcltlion ofx a;dt Greek symbols
Ca capillary number e
pitary a thermal diffusivity
c, specific heat at constant pressure ) -
D function ofx ands B thermal expansion coefficient
CHOT LY L . e slenderness ratio
E activation energy of the dynamic viscosity law ¢/ emissivity
F leading-order temperature, function.ofinds " dynamic viscosity
Fr Frou_de number _ P density
8 gravity acceleration o Stefan—Boltzmann constant
h film h<_aat transfer coefﬁment. . . 0 nondimensional temperature
h effective heat transfer coefficient for convection bscri
and radiation Subscripts
k thermal conductivity B bottom (iris) of furnace
L axial length c convection
M Mach number ex gases surrounding the outer annular jet
n unit outward normal f furnace _
p pressure g gases surrounding the preform _
Pe thermal Péclet number in gases enclosed by the inner annular jet
Pr Prandtl number p preform
q heat flux pu spinneret
0 energy dissipation rate d radiation
. ; ref reference
r radial coordinate S
. T top (iris) of furnace
R radius
0 reference value
R gas constant . :
R R Id b 1 inner annular jet
€ Eynolds num Iefr in the d L .12 interface between the inner and outer annular jets
S pre-exponential factor in the dynamic viscosity outer annular jet
law _
f time Superscript
T temperature * dimensional variable

stacking of small capillaries around a solid rod which forms approximation [9] or models for the film heat transfer co-
the fiber core, and drilling directly in a solid glass; the latter efficient as a function of the (local) Reynolds and Prandtl
is frequently used in the manufacture of atom-guiding fibers. numbers [10]. Radiative heat exchanges have also been con-
In any case, the geometry of the holey fiber can be con- sidered in these one-dimensional models by correlating these
trolled by acting on the parameters used in the fiber-drawing exchanges through a temperature-dependent Biot humber.
process such as the temperature of the furnace, the drawindn addition, these one-dimensional models have frequently
speed, the speed at which the preform is injected or fed into been derived by means of asymptotic expansions in the slen-
the furnace, etc. derness ratio and are only valid for small Biot numbers, have
Since the optical properties of microstructured fibers de- not considered the preform, and have not accounted in a de-
pend strongly on the size and locations of the air holes in tailed manner for the effects of the radiation and convective
the cladding, it is of paramount importance to determine flow effects of the gases surrounding the fiber on its dy-
the effects of the drawing conditions on the fiber cross- namics and solidification. Moreover, most of these models
section. In order to achieve this objective, most theoretical employ a constant viscosity and consider Newtonian fluids
and modelling studies of single hollow fibers have consid- with either a constant dynamic viscosity [5—8] or a viscosity
ered a single material, used a slender or long wavelengthlaw of the Arrhenius type [10].
approximation, and assumed either isothermal flows [5-8]  Multidimensional models of optical fiber drawing proces-
or the heat transfer exchanges between the fibers and theses include that of Lee and Jaluria [11] who considered
surroundings by means of either a constant Biot number the two-dimensional free-surface flow of fused silica with
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aprescribed necking shagnd variable flow properties, ac- this model provides a one-dimensional set of equations for
counted for the radiative transport between the preform, the the hollow, compound fiber geometry, axial velocity compo-
furnace and the (top and bottom) irises by assuming dif- nent and temperature at low Biot numbers, which reduces
fusive, spectral surfaces, neglected the motion of the gasedo that for annular or holey fibers if the two materials of
surrounding the preform, included viscous dissipation, and the compound jet are identical. Under isothermal conditions,
used a stream function-vorticity formulation to determine this one-dimensional model reduces to that developed by the
the temperature in the silica fiber. This formulation is rather author for one-dimensional, hollow, compound fibers [6].
complete; however, the use of a prescribed preform shape Our objective in this paper is two-fold. First, a coupled
limits seriously the validity of their model because this shape model for the study of hollow, compound optical fiber draw-
should really be a result of the overall computation of opti- ing processes that accounts for the heat transfer in the pre-
cal fiber processes, e.g., heating of the preform, and shouldform and for the motion of the gases surrounding the pre-
not be prescribe@ priori. Other two-dimensional studies form and fiber by means of two-dimensional equations, em-
of optical fiber drawing processes include those of Yin and ploys a net radiative model for the radiative heat exchanges
Jaluria [12] which has analogous limitations to those of Lee amongst the preform, fiber, irises and furnace walls, and uses
and Jaluria [11], and Rosenberg et al. [13] and Papamichaelasymptotic one-dimensional equations for the geometry, ax-
and Miaoulis [14] who used a von Karman—Pohlhausen tech-ial velocity component and temperature along the fiber for
nigue to determine the temperature profiles in thick fibers. small Biot numbers is presented. The results of this model
Reeve and Mescher [15] have shown experimentally that are then used to determine the magnitude of the radiative
the air flow adjacent to a polymer optical fiber may be lami- and convective heat exchanges and the local Biot numbers
nar, oscillatory or chaotic, depending on the thermal bound- along the hollow, compound fiber. Second, calculations are
ary conditions imposed at the furnace wall and irises, and performed with only the asymptotic one-dimensional equa-
that, in the chaotic regime, the drawn fiber varies in diame- tions for the hollow, compound fiber's geometry, axial veloc-
ter 2.5 to 10 times more than that measured under laminarity component and temperature using a constant Biot num-
heating conditions. Reeve et al. [16] studied the heating of ber, and the results of these calculations are compared with
polymer preforms by means of a two-dimensional formu- those of the coupled model, in order to determine whether
lation for the gases in the furnace which accounted for the or not the one-dimensional model with a constant Biot num-
radiative heat exchanges between the preform, the furnaceber approximation provides results in accord with those of
and the irises, and which assumed isothermal preforms andthe coupled model which is much more complex and re-
did not consider the necking of the preform and the fiber.  quires longer computational times than the solution of the
In this paper, we study the fluid dynamics and heat trans- one-dimensional equations for the compound fiber’s geome-
fer processes that occur in the manufacture of a single hol-try, axial velocity component and temperature.
low, compound fiber by accounting for convective and ra- The paper has been organized as follows. In Section 2,
diative heat exchanges between the furnace walls and thethe governing equations for the hollow, compound preform
preform and fiber, by means of a coupled model; we also and fiber and for the gases that surround the preform and
study the cooling of the fiber below the heating region or fiber are presented. In Section 2.1, it is assumed that the
furnace by means of an asymptotic one-dimensional model.preform is injected or fed into the furnace at constant ax-
The coupled model of hollow, compound fiber drawing pre- ial velocity and behaves as a solid material until it reaches
sented here is a hybrid analytical-numerical one in that nu- its melting temperature due to the radiative heat exchanges
merical methods are used to determine the radiative heatwith the furnace walls and the convective heat transfer with
exchanges between the furnace walls and the preform andhe gases that surround it. Section 2.2 contains a summary of
fiber, the motion of the gases surrounding the fiber, and con-an asymptotic analysis of slender, hollow, compound fibers
ductive heat transfer in the preform, whereas an asymptoticat low Reynolds numbers that accounts for capillary and
method is used to derive one-dimensional equations for thegravitational effects and pressure differences across the fiber.
fiber's geometry and axial velocity component. For small For small Biot nhumbers, an asymptotic study of the en-
Biot numbers, the temperature along the fiber is also deter-ergy equation for the fiber is also presented; this analysis
mined asymptotically from the solution of an (asymptotic) yields a one-dimensional energy equation along the fiber.
one-dimensional equation which includes conduction along In Sections 2.3 and 2.4, the equations governing the dy-
the fiber and heat exchanges with the surroundings. Whennamics of the gases surrounding the fiber and the radiative
the Biot number is on the order of or larger than one, the heat exchanges between the preform, fiber and furnace, re-
temperature in the fiber is two-dimensional with a velocity spectively, are presented, while, in Section 3, the numerical
field which may be approximated by that obtained from a methodology used to solve the governing equations for the
slender or long wavelength theory. preform, fiber and gases surrounding the fiber is described in
The one-dimensional model presented here can also besome detail. Section 4 presents some sample results to illus-
used to study fiber spinning processes such as those occurtrate the heating of the preform and fiber in the furnace (in
ring in the manufacture of glass and textile fibers, i.e., melt Section 4.1), and the cooling of hollow, compound optical
spinning processes, where there is no preform. In addition, fibers (in Section 4.2) that have a Newtonian rheology.
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2. Formulation slenderness ratio. Therefore, in the neck-down region, we
use a hybrid coupled model based on two-dimensional equa-
Fig. 1 illustrates the different regions during the draw- tions for the axisymmetric preform and one-dimensional
ing of optical fibers. These regions are referred to as 1, 2 equations for the fiber. This coupled model is obviously an
and 3 and correspond to neck-down, cooling and coating, re-approximation to the true geometry of the preform and fiber
spectively. In the neck-down region, a preform is fed into a in the neck-down region (cf. Fig. 2) which has the advan-
furnace where the heating of the preform by convection and tage that its analysis is relatively simple since the preform
radiation causes it to melt, while the pulling speed causesis assumed to be nondeformable until it reaches the melt-
it to stretch and accelerate. The fiber exiting the neck-down ing temperature, while the shape of the fiber is determined
region is cooled and its diameter is controlled in the cooling from one-dimensional equations. This simplicity allows us
region. The cooled fiber then passes trough a coating cup, &0 consider in great detail the convective motions in the gases
coating concentricity monitor, coating curing and a diame- surrounding the preform and fiber as well as the radiative
ter monitor. The cooled and coated fiber is then collected in heat exchanges in the furnace. Moreover, as stated in the In-
a drum or spinneret. troduction, the one-dimensional model for the fiber is also
A schematic of the neck-down region is presented in |
Fig. 2 which illustrates the preform, the top and bottom irises 1 PREFORM
and the furnace where the preform is heated. Owing to the X -
pulling of the fiber and the radiative heat exchanges between TOPIRIS
the preform and the furnace, the fluid dynamics of the pre- Ll
form and fiber in the neck-down region is an extremely com-
plex problem since there is melting and the transition from
the preform to the fiber is a free-surface problem where the
location of the free surface is coupled to the fluid dynamics
and heat transfer equations. It is for this reason that most of
the two-dimensional studies concerning the drawing of opti-
cal fibers have specified the shape of the preform and fiber,
e.g., [11,12], and considered only the fluid dynamics of the
preform. In this paper, the necking of the preform has been
modelled as indicated in Fig. 3 as follows. We assume that
the axisymmetric preform preserves its diameter until, owing
to radiative and convective heat exchanges in the neck-down o \
region or furnace, its cross-sectional averaged temperature FIBER BOTTOM IRIS
reaches the. me_ltlng temperature; this region co_rresponds tOFig. 2. Schematic of the furnace illustrating the neck-down or heating re-
0<x<L,inFig. 3. ForL, <x < Ly and provided that gion, preform and fiber.
R, < Ly—L,,weassume that the fiber can be analyzed as-

ymptotically by means of perturbation methods based on the | wr
—_— —
- R,
FEEDlING COATING ’ '1
] ’O_ cup |
| r
— m — L e | -
PREFORM 3 CONCENTRICITY T
MONITOR x
A

T
Ly
1 [ CURING
FURNACE !
—T—3 .
N .

DIAMETER

5 —] :']\ MONITOR
DIAMETER
_l_ MONITOR
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Fig. 1. Schematic showing the different regions in the drawing of optical 1"
fibers. (Neck-down or heating region: 1; cooling region: 2; coating re-
gion: 3.) Fig. 3. Schematic of the model used for the neck-down or heating region.
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valid to study the cooling of the fiber in the cooling region ing a slender flow or long wave length approximation from

(cf. Fig. 1). x =L, to Ly in the axial direction, and fronRy(x, ¢) to
We, thus, consider a cylindrical furnace of radRis and R2(x, 1) in the radial one, while the preform has a constant
length L ; (Fig. 3). On the top wall of this furnace, i.e.,= axial velocity equal tar, until it reaches the melting temper-
0, a hollow, compound preform consisting of an inner ma- ature atx = L, which may be a function of time. If the gases
terial (subscript 1) of inner and outer radii equalR@(0, ) surrounding the preform are not participating, radiative heat

and R(0, 1), respectively, surrounded by an outer material exchanges occur between the furnace walls and the preform
(subscript 2) of inner and outer radii equal &40, r) and and the hollow, compound fiber. In addition, the difference
R2(0, 1), respectively, at temperatures equalt¢0, r, r) and between the temperature of the vertical, top and bottom walls
T>(x, 0, r) smaller than the melting temperatures of these of the furnace, and the temperature and velocity of the fiber
materials, is pushed in the verticaddirection into the fur- introduce both forced and free convection effects that may
nace (cf. Fig. 4). Owing to the radiative and convective heat result in substantial heat exchanges with the fiber and, there-
transfer exchanges between the furnace walls and the hollowfore, affect its fluid dynamics.

compound preform, the fiber's materials reach their melting

temperatures and a hollow, compound jet is obtained. The2.1. Governing equations for the preform

temperatures of the furnace vertical wall, ie= Ry, and

top and bottom irises located at= 0 andx = L ¢, respec- In order to analyze the fluid dynamics and the convective
tively, are selected so that the hollow, compound fiber melts and radiative heat transfer pnenomena in the preform and the
before reaching the furnace bottom wall, and the melted fiber hollow, compound fiber and in the gases that surround the
is pulled down and made to pass through the cooling and preform and fiber, we shall assume ti®atx, ), R(x, t) and
coating regions before it is collected downstream at the spin- Ry (x, ¢) are only functions of time for & x < L, (1), i.e.,
neret at an axial velocity equal @,y > u,, whereu,, is the preform is a hollow cylinder, the preform moves with ax-
the axial velocity component at which the preform is intro- ial velocity u ,(t) and enters into the furnace at temperatures
duced into the furnace. Ldt, be the axial distance from  equal to71(0,r,¢) and T»(0, r, t). Under these conditions,
the furnace’s top wall to the location where the preform the governing equations for the temperature in the two ma-
melts, i.e., the axial location at which the cross-sectional av- terials that compose the preform can be written as

eraged temperature is identical to the melting temperature,

and assume that the preform behaves as a rigid solid mate,, c,, (ﬂ + Mfﬁ)

rial until the melting temperature is reached. Assume also ot dx

that the melting temperatures of the two materials that com- 2T, ki o ( OT; )

pose the hollow, compound preform are very similar, and Zkiﬁ 75(’?)* i=12 (1)

maxR2(0,1) « Ly — L, and maxR,(0, 1) < Ry so that the , .

hollow, compound fiber is slender and its diameter is much Wherep, €, andk denote the density, specific heat at con-

smaller than the furnace diameter, and thgt0, r, ) and stant pressure and thermal conductivity, and are assumed

T>(x, 0, 1) do not differ significantly from each other. constant. These equations are valid foOr < L. At
Under these conditions, the fluid dynamics of the hollow, * = 0, the temperatures of the two materials is known, and,

compound fiber, i.eL, < x < L 7, may be analyzed by us- atx = L, the temperatures are equal to their melting values
b which are assumed to be nearly the same for the two materi-

als.

The gases enclosed by the inner surface of the preform
are assumed to be dynamically passive and, in this study, we
apply the following boundary conditions in the radial direc-
tion, for0<x < L,

0Ty
klw(X,Rl, =q1, Ti(x,R1,1)=T,(x,Ry,1) (2

oT 0T
k1= (x, R, 1) = ko= (x, R, 1)
ar ar
Ti(x, R, 1) =T2(x,R,1) (3
01>
_kZW(x,RZf)ZQZ, TZ(x,RZf):Tg(x’RZ’t) (4)

which reflect the facts that there is heat transfer between
the preform and the gases that it encloses, both the tem-
perature and the heat flux at the interface between the two
materials that compose the fiber are continuous, and the
Fig. 4. Schematic of the hollow, compound fiber geometry. heat flux and temperature at the preform’s outer surface




J.I. Ramos / International Journal of Thermal Sciences 44 (2005) 832-850 837

are continuous and equal to those of the gases surround- [ﬂ — _ i }i( ir%)

ing the preform. The heat fluy, accounts for convection Dt or  ror or

in the gases surrounding the fiber and radiative heat ex- d du;  dv; 2uiv

changes with the furnace walls, and may be writteg-as + az <“i <¥ E)) 2 ™

gc + g whereg, = —kg%(x, Ry, 1), the subscripy de- DT 32T, ki o [ oT;

notes the gases surrounding the cylindrical preform@nd  piCpi 5= =ki——5 75(r3—r) + 0; (8)
will be determined below. A similar comment applies;to

Note thatg, can also be written ag = l_zp(Tz(x, Ro,t) — wherer is the time,x andr are axial and radial coordi-
Tex) + 08;(724()5, Ra,t) — TS = hy(Ta(x, R2, 1) — Tex) nates, respectively, a_ndv are the axial and radial velocity
whereh, = i, + GS;(Tzz(L Ro.1) + T2)(Ta(x, Ra. 1) + components, respectively,andT are the pressure and tem-

perature, respectively;, u andk are the density, dynamic
viscosity and thermal conductivity, respectively: 1, 2 de-
note the inner and outer materials, respectively, character-

Tex), whereﬁ,, denotes the film heat transfer coefficient at
the outer surface of the perform and is a function of the
Reynolds and Prandtl numbets,is the Stefan-Boltzmann .

y s — ' , ized by R1(x,1) <r < R(x,t) andR(x,t) <r < Ra(x, 1),
constantg), is the emissivity of the preform’s outer surface, ; : . .

; ; respectively,R; denotes the radius of the inner material's
Tex is a reference temperature of the gases surrounding the : : . .

. L -, inner interface,R is the interface between the inner and

preform andh, is an effective film transfer coefficient that, uter materials. and- is the radius of the outer material’s
therefore, depends on the Reynolds and Prandtl numbers ang ' 2

uter interface (cf. Fig. 4) is the gravitational acceleration,
the temperatures of the gases that surround the preform anc%U aU az(z %U ] 9 o
, = =5~ +us=- +v3=, C, andk are the specific heat at
the temperature at the preform’s outer surface. c%[nstaqut resgﬁre anddr the thermal conductivity, respectivel
It must be pointed out that there is a mathematical in- P Y. Tesp Y.

compatibility between the thermal boundary conditions in and the energy dissipation ra, is

the radial direction considered above and the condition that au\2 v\ 2 v\ 2 9u  lov\2

melting occurs at = L . In addition, the latentheatof melt- @ = 2M<( ) + (5) + < ) + (a—r + 58_x> )

ing has been neglected. A similar approximation will also

be used when analyzing the fluid dynamics of the hollow,

compound fiber where latent heat effects will be disregarded Eds. (5)—(8) are subject to the following boundary condi-
while the fiber solidification is assumed to occur due to a de- tions. The gases enclosed by the inner material and those
crease in temperature that causes an exponential increase igurrounding the outer material are assumed to be dynam-

the dynamic viscosity of the two flowing materials that com- ically passive because they have smaller densities and dy-
pose the hollow, compound fiber. namic viscosities than those of the compound fiber’s inner

and outer materials, respectively, and the three interfaces are
2.2. Governing equations for the hollow, compound fiber material ones. At the i_nterfa_ces, the shear stre_ss must be con-
tinuous, whereas the jump in normal stresses is balanced out
by surface tension. The kinematic and dynamic boundary
conditions at the three interfaces can be written as

0x

Once the preform reaches its melting temperature-at
L, (1), the materials that compose it flow under the action of
gravity and pulling from the spinneret, and a hollow, com- v; (x’ Ri(x. 1), t)
pound jet is formed. This jet passes through the cooling and

coating regions (cf. Fig. 1) before it is collected in a drum  — OR; + ui(x, Ri(x,1), t) aRi, i=12 (20)
or spinneret. The hollow, compound fibers/jets considered dt dx

in this study are assumed to be incompressible, Newtonianvi (x. R(x, 1), 1)

and axisymmetric with a dynamic viscosity that increases OR aR

in an exponential manner as the temperature decreases, and = 3; + ui x, R(x 1), t)a_x’ i=12 11)

or 0x

with constant density, specific heats and thermal conductiv- v, du;\ OR;
ity. The governing equations for the two materials of the 2Mi( ) Py
hollow, compound fiber can be written as (fop <x <Ly

2
in the neck-down region and faf < x < x», wherex; and o <% N %) (1 B (8Ri> ) —0
x2 denote the exit of the furnace and the exit of the cooling \or  ax ox
region, respectively) i=12 (12)
dvz  Odu2\O0R
du; 19 2 e T2
8—;4-;5(1’111‘):0 (5) MZ( ar Bx)ax
2

Du; opi 0 ou; oup  dvy oR

. —_ 1y T, 0 Ly 1o (22
Y ax+az<“’ax) +“2<ar+ax ox

10 ou;  0v; dvy  Jdup\dR
e T e e | R T (6) =2u1| == — - )=
ror or ox



838

3 9 AR \?
b 222 (1 () ), atr=rR (13)
or ox 0x

2
duy (OR1 vy duy odvy\oR1
2u—| —= 2u1— —2 — 4+ —)—
M18x<8x>+'u18r M1(8r+3x)8x
IR\?
+pPn—pO|(1+|—
0x
=o1J1, atr=Ry (14)
duz (OR> 2 ov2 duz 0v2\ 0R>
2ur—| —= 2up—= -2 — 4+ =)=
M23x<8x>+'u28r M2(8r+8x>8x
IR\ ?
+(Pex_P2)<1+ <—) )
0x
=o2Jy, atr=R> (15)
dup (IR\? Jvo dup  dvo\ AR
Rz Wi Qlp—l — 2 RIS e
H2 ox (8x> e ar MZ( or + dax ) dx
IR\
+(p1—p2)|(1+| —
0x
dui (IR \? v
—ou, (2R 2,21
Mo <8x) Ty
0 B oR
—2u1 ﬂ—i—ﬂ — +o012J, atr=R (16)
ar 0x ) 0x

whereo is the surface tension at the inner interface of the
inner materialp, is the surface tension at the outer materi-
al’'s outer interfacegys is the surface tension at the interface

between the two materials that form the hollow, compound
fiber, pin is the pressure of the gases enclosed by the inner

J.I. Ramos / International Journal of Thermal Sciences 44 (2005) 832-850

The thermal boundary conditions are as follows

Ti(x,R,t) =To(x, R, 1) (20)
T T
k1t (x, R, 1) = ko2 (x, R, 1) (21)
on on
aT
—k1 5= (x, Ry, 1) = h1(Tin — Ta(x, R1, 1))
onq
Ti(x, R1,t) =Tg(x, R1,1) (22)
T
—ka—2(x, Ra, 1) = ha(Ta(x, Ra, 1) — Tex)
ano
T2(x,R2,1) = Ty(x, R2, 1) (23)

whereni, n andno denote the normal coordinates to the
interfacesr = R1, R and Ry, respectively, andi1 and h»
denote the heat transfer coefficients that include convec-
tion and radiation. These coefficients are, in general, func-
tions of the Reynolds and Prandtl numbers and the tem-
perature as discussed previously in Section 2.1, and in-
clude the effects of convection and radiation heat trans-
fer; in fact, they have a similar expression to that for the
boundary conditions at the outer surface of the preform,
and, therefore,—kgg—,fg(x, R, 1) = ho(Ta(x, Ro, t) — Tex) =

—ky 33 (v, R2, 1) + 4.

Nondimensionalization of the radial and axial coordi-
nates with respect t& andL = L — L,, in the furnace
or L = x2 — x1 in the cooling region, wher®&y is a charac-
teristic radius,L,, denotes a constant reference value char-
acteristic of the length of the preform, the axial and radial

velocity components with respect t@ and vg = Rouo/L,

material, pex is the pressure of the gases surrounding the respectively,p with respect touguo/L, densities and dy-

fiber's outer material, and

J'_d’i 1 92R, s (14 R\ 2\ M2
l_Ri i ax2’ T 0x
i=12 (7)
¢ 102R IR\ 2\ Y2
R ¢ 3x2’ ¢ + 0x (18)

In general, bothpi, and pey are space and time depen-

dent, but, at the low Mach numbers considered in this study,

they may be assumed to be constant with an error @<,
whereM denotes the Mach number.
The dynamic viscosities employed in this study may be

written as
Wi = Sl.eEi(Tref*T) (29)

wherei = 1, 2, Tief is a (constant) reference temperature,
and S; > 0 and E; > 0 are constant with the dimensions

of dynamic viscosity and inverse of temperature, respec-

tively. These viscosity laws imply that the dynamic viscosity
increases exponentially with temperature #r > 0 and

T < Tref, and can be interpreted as a linearization or ap-

namic viscosities with respect tapy and wo, respectively,
and temperature &= (T — Tg) /AT, where quantities with
the subscript 0 andh T are constant values, one obtains the
following system of governing equations

ou; 190
i 2% oy =0 (24)
0x ror
Du,' 28pi d 2 3Lt,'
Rep; =—e"— 4+ — | 2e%u; —
¢ p'Dt 88x+az<8m8x
10 u; 231),' Re
—— | pir| — — —pi (25
r8r<'ulr<8r te 8x>)+ Fr'ol (25)
Dv; ap; 10 av;
Repj— = —— + —— | 2u;r—
S ar+rar<“’rar
0 ou; 20V 2u;v
— il — — ) - 26
+82(Ml<8r te 8x>> 2 (20
DO; 320, 10 [ 86
eRePr—— =q;(?— + = —(r—
Dt 9x2  ror or
\)l'MZPI'—
i 27
e, 0 @n

proximation to the exponent of the Arrhenius law; constant where, for the sake of conciseness, the same symbols have

viscosity corresponds td; = 0. In the sequel, we shall re-
fer to S; and E; as the pre-exponential factor and activation
energy of the dynamic viscosity law, respectively.

been used for dimensional and dimensionless quantities,
o; =ki/piCpi, ki, pi, ki andCp; have been nondimension-
alized with respect tpg, po, ko andC 0, respectivelyp 2=
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u3/CpoAT, e = Ro/L, Pr = 110Cpo/ ko is the Prandtl num-
ber,Re= pougRo/ 1o is the Reynolds numbelfy = u%/gRo
is the Froude number, and

o-2((3) +(3) +(2))

du  ,0v)\>
— — 28
+<8r te Bx) (28)
subject to

vi(x, Ri(x,t),t)
_OR;
IR

vi(x,R(x,t),t)

OR;
—l—ui(x,Ri(x,t),t)a—xl, i=12 (29)

OR JR
:E—i_ul(x,R(x,t),t)a, l:172 (30)

282(% B %) aaii + Mi(% + 82%>
X(l_82<%>2> =0 i=12 (31)
ax
()2

2
X (1—82({;—?) ), atr =R (32)

ouq {0R1 2 ov1 ouq 2,0v1\ Ry
2620 A (CEL) 0 T g (22 4 200 ) 0T
8M18x<8x>+ular Ml<8r+8 dx ) dx
IR\?
+(Pi_171)<1+52(—) )
ax
1
=EJ1, atr =Ry (33)
duz (IR2\? vz duz  ,0v2)\ ARz
262, 2 (222 42, 002 gy T2 4 2002 ) 012
8M28x<3x>+M28r M2<8r+8 ox ) ox
IRz \?
+(pe—p2)<1+82(—2> )
ox
=@JZ, atr =R; (34)
duz (IR\? Jvo dup  ,0v2\ OR
20 2 (O 401,02 g, 22 1 20Y2) 08
H2 ox <8x) 2 or M2 or te dx ) dx
2
oR
+(P1—p2)(1+82(—> )
ox
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Table 1
Relations between dimensional and dimensionless variables, and nondi-
mensional parameters

Dimensional variable Dimensionless variable Dimensionless parameter

x* x=x*/L* e=R5/L*

r* r=r*/R} M? = ug?/ChoAT*
u* u=u*/ug Re= pgug/ug

v¥ v =v"/(euf) Fr= Maz/g* R

T* 0=(T* =T /AT Pr=psCho/ks

r* P = ugup/L* Ca= pqup/og

o* o=p%/p Bi = h§Ry/ kS

w* w= /g Pe= RePr

e+ k=k*/k

c Cp=Cp/Cy

h* h=h*/

01(x, R, t) =602(x, R, 1) (36)

901 ,0R1001 h1_. o R1\ %\ Y2
—= g2 == = —BiGn—61)(1 —
ar ¢ ox dx kg (Gin 1)( te ox

atr =Ry (37)

362 ,0R2002  ha_. [ 9R1\?\ Y2
2 2t = TBi(fex— 62)( 1 —
ar ¢ ox 0x ko (Bex 2)< Te < ox )

atr =Ry (38)
IR0 ikt
or dx 0x k1 \ or dx 0x

atr =R (39)

where Ca; = pouo/o; and Ca = uouo/o12 are capillary
numbersBi = hoRo/ ko is the Biot numberkg is a constant
reference value and has been nondimensionalized with re-
spect torp. Note thatp, k andC,, have been assumed to be
constant.

In order to clarify the relationships between dimensional
and dimensionless quantities, Table 1 provides a summary of
both the correspondence between the dimensional (denoted
with asterisk) and dimensionless quantities and the nondi-
mensional numbers used in this paper.

Assuming thaRe=¢R, Fr = ¢ 1F,Cg = ¢ 1C;, Ca=
e~1C, M? = O(¢* andPr = O(1), it is an easy matter to
show that the above equations depend e, therefore,
employ the following asymptotic expansions

¢ (x, 1, 1) = go(x,r,1) +epp(x, 1, 1) + O(e?) (40)
for ¢ =u, v, p andd (and, thereforey), and
¥ (x.1) = Yolx, 1) + e%Pa(x. 1) + O(e*) (41)

for Ry, R and Ry, in the governing equations and bound-
ary conditions. The boundary conditions are then expanded
in Taylor series with respect tgo. To leading order, i.e.,
0(¢9), the axial momentum equations and the shear condi-
tions at the interfaces yield thato = B; (x, t), whereas the
continuity equation yields



840

0= — — —— 42
vio r 2 0x (42)
wheredC; is a function ofx and:.

The radial momentum equations yield
0 B; 1
pio=D; — : —Zcif—mod (43)
r2 or

whereas the kinematic conditions at the interfaces yield
9 ( RS

C1=Czand
) (Ko, 2 (pRe) _ +
o\ 2 ax\"2)
9 (R . 3 (R
—|B—= 44
8t< 2 >+ 8x< 2 (44)
whereu;o(Rjo) = pio(x, Rjo(x, 1), ).
Use of the normal stress conditions at the interfaces yields
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Use of the axial momentum equation and shear stress

conditions at @¢?) yields the following one-dimensional
momentum equation

B 0B
(p1A1+ p2A2)R( — + B—
Jat ax
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Ro) — Ro) OR
4 H10(Ro) — 1120(Ro) 9Ro (48)
Ro ax

whereAjjij0= f,fl(; paor dr, Azjizo= f,f(fo woor dr,

1 1
A= (R RR). A= 3(Re— RY) (49)
and Eq. (44) can be written as
d0A;  9(A;B) .
2P0, =12 50
ot T ax . (50)
9 (RE\ o ( R}
—| = —|B—)=C 51
az< 2 ) + 8x< 2 ) 1 (1)

Egs. (48), (50) and (51) constitute a system of four equa-
tions for the four unknownsg, R1p, R20 and B, provided
that10 anduog are known (cf. Eq. (19)).

So far, we have not employed the energy equation. This is
due to the fact that the solution of this equation depends on
the Biot number which, in turn, depends on the convective
heat exchanges with the surrounding gases and the radiative
heat exchanges between the hollow, compound fiber and the
furnace walls in the neck-down region and between the fiber
and the surroundings in the cooling region (Fig. 1). The Biot
number is a function of temperature.

Here, we first assume th& = hoRo/ko = 2B, where
ho is a constant film heat transfer coefficient, dnky/ hok;
are on the order of unity, for which the energy equation
and the boundary conditions yield, to(€8), 610 = 620 =
F(x,1), whereas, to @2), the energy equation and the ther-
mal boundary conditions yield

— d
R PT(E((melAl + p1Cp1A2)F)

a
+ —

p ((p1Cp1A1 + :O].CplAZ)FB)>

or —
P ((klAl + k2A2)5> + Ri0h1B(F — 6in)

+ R20h2B(F — fex) (52)

where, agairp;, Cp;, h; andk; have been nondimensional-
ized with respect tgo, C0, ho and ko, respectively. The
termshlB and/, B in the above equations can be replaced
by B1 = h1Ro/ko and B> = haRg/ ko, respectively, where

in these two expressioris, kg and Rg are dimensional. In
addition, R Pr can be replaced by a thermal Péclet number.
The above equation is only valid for small Biot numbers and
is a one-dimensional energy conservation equation.

For large Biot numbers, the one-dimensional equation (52)
is not valid and one should use the time-dependent, two-
dimensional energy equations for the two materials that
compose the hollow, compound fiber subject to continuity
of temperatures and heat fluxes Rg(x, ¢t), Rio(x, ) and
R1o(x, 1), where the heat fluxes &10(x, 1) and Rog(x, t)
are analogous to those of the preform and, therefore, are not
repeated here. In these two-dimensional equations, the slen-
der fiber approximation can still be used to negle¢%)
terms and the leading-order velocity components derived
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in the asymptotic analysis for the convection terms, i.e., %a%(rpov) =0, the gases are assumed to be igeal poRT,

Egs. (42) and (48), can be employed in the energy equation.whereR is the gas constant, and the last term of Eq. (54)
The above analysis shows thaBif= O(¢2), the leading- must be replaced bypg.

order temperature along the hollow, compound fiber is only

a function ofx ands and, therefore, if the viscosity of the ~2.4. Radiative heat transfer model

materials that constitute the fiber is only a function of the

temperature, then the integral terms in the leading-order mo-  The net radiative method for enclosures [17] was used to

mentum equation (cf. Eq. (45)) are nil. However Bf is determine the thermal radiative heat flux, ig,,to each sur-

on the order of @), heat losses/gains enter the energy face, including the preform and fiber a_md the furna_ce walls

equation at leading order, i.e., the temperature field is two- @nd irises. To that end, the preform, fiber and vertical wall

dimensional and the integral terms in the leading-order mo- ©f the furnace were divided into exterior ring elements, and

mentum equation are not nil. the bottom and top walls of the furnace, i.e., the irises, were

The one-dimensional equations (48), (50)—(52) are sub- divided into annular elements. For each element,

ject to initial atr = 0 and boundary conditions at=0and /=Y /5 . 1-¢ =N —
x =1, i.e., at the axial locations where the preform melts Z <8—, — Fr—j o )er = Z Fy—jo (T = T}) (57)
and the hollow, compound fiber is collected, respectively. In j=1 *"J J j=1

general, the values dtio, Ro and Rxo, B and F are spec-  whereN is the number of elements;; is the Kronecker’s
ified atx = 0 and correspond to those of the preform at its delta §; = 1 if k = j, and 0, otherwise)y is the Stefan—
melting temperature. In the case of glass fibers drawn from aBoltzmann constant, anl;_; are the view factors which
melt, i.e.,L, =0, averaged values of the velocity and tem- were determined by direct numerical integration.
perature must be used to determine bBtand F atx = 0. Since the sum of each element’s view factors must be
In addition, downstream boundary conditions are to be spec-equal to unity, we imposed this constraint in the above equa-
ified for bothB and F atx = 1. In the calculations reported  tion, because calculations performed without this constraint
here,B(1, t) was specified and a no heat flux condition was showed that the sum of each element’s view factors was
used atr = 1. Note that the one-dimensional energy equa- within 0.5% of unity. In addition, for slender fibers, the outer
tion is of second-order in. surface of the fiber was approximated by the surface of a
cone for the calculation of the view factors. This approxima-
2.3. Governing equations for the gases surrounding the tion is not expected to introduce large errors, while it avoids
fiber the need for the calculation of the view factors at each iter-
ation of the numerical technique used to solve the equations
The motion of the gases surrounding the preform and for the preform, the fiber and the gases surrounding the fiber.
fiber was assumed to be axisymmetric. These gases were The simultaneous solution of Eq. (57) for all the surfaces
considered to be either incompressible or compressible; inProvides the net radiative heat transfer flux at the preform
both cases, the gas dynamic viscosity, specific heat at con-2nd fiber's outer surfaces. At these surfaces, the tempera-
stant pressure and thermal conductivity were assumed to bdure is continuous and there is no jump in the heat fluxes,

constant and the viscous dissipation rate was neglected. Ire.g., —kz%(x, R, 1) =q2 = —kg%(x, Ro, 1) + gr(R2),
the first case, the Boussinesq approximation was employedwhere g, (Rz) denotes the net radiative heat transfer flux
and the governing equations can be written as determined from Eq. (57). In additior, may be used
in the fiber's one-dimensional energy equation to deter-
du 190 ; : - ; _
— +Z—(rv)=0 (53) mine the local film heat transfer coefficient, singg =
dx —ror ho(T2(x, R2, 1) — Tex).
Du ap Pu  wd [ du The top and bottom (irises) walls of the furnace were as-
POy = Tax TR T o (VE) sumed to be isothermal with constant temperatures equal to
. Tr andTg, respectively; the vertical wall of the furnace was
+pogh(T —To) (4) also assumed to be isothermal but with a temperature that
Dv _ dp 3% gi(ra_v> o (55  Was parabolic and exhibited a relative maximum at mid-
P T T or “axZ ror\ or r2 height. The boundary conditions at the preform and fiber
DT 2T ko / oT outer surfaces were incorporated into the energy equation
ponE =k + - ar (r 8_> (56) for the gas as indicated above.
X r or r

No-slip boundary conditions were applied at the furnace
where pg and Tp are a reference density and a reference top, bottom and vertical walls and at the fiber's outer in-
temperature, respectively, afds the thermal expansion co-  terface and at the outer surface of the preform. Notice that
efficient which is assumed to be constant. these boundary conditions are a simplification of the real

For compressible gases, Egs. (53)—(56) are valid with the ones because the outer surface is a material surface where
following exceptionspg is not constant, Eq. (53) must be re- the tangential stresses are continuous and the jump in nor-
placed by its compressible counterpart, i?g‘%,Jr %(pou) + mal stresses must be balanced by surface tension. However,
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since the dynamic viscosity of gases is much smaller than were determined at the faces of these volumes. A power-law
that of the fiber material, the gases may be considered as pastechnique was used to discretize the convective fluxes, and
sive for the fiber, and the fiber may be considered as a rigid a pressure-correction algorithm based on that of the SIM-
material for the gases. The errors incurred by not imposing PLE technique [18] was employed in the calculations. The
boundary conditions on the tangential and normal stresses abrdinary differential equations resulting from the integration
the fiber's outer surface when solving the equations for the of the gas equations in control volumes were discretized by
gases that surround the hollow, compound jet are expectedmeans of an implicit, first-order accurate, backward Euler
to be small and, therefore, the approximation presented heremethod. Due to the coupling of the gas equations, under-
may be a good one, even though its accuracy was not as+elaxation factors equal to 0.5 and 0.8 were used to solve
sessed by comparing the numerical results presented her¢he discretized forms of the momentum and energy equa-
with those of other calculations which incorporate the kine- tions, respectively. An under-relaxation factor equal to 0.1
matic and dynamic coupling between the fiber and the gaseswas used in the pressure correction algorithm.
that surround it. The calculations were preformed as follows. First, the
equations of the net radiative model for enclosures were
solved with guessed temperatures at the preform and at
3. Numerical methods the fiber's outer surfaces. This model provides the radia-
tive heat fluxes on the surfaces of the fiber, furnace and
The conduction heat transfer equations for the preform preform. We then solved the equations for the gases sur-
were discretized by using a control-volume formulation, rounding the preform and fiber and determined the total
second-order accurate finite differences in the axial and ra-(convectivet radiative) heat fluxes on their surfaces. Finally,
dial directions, and first-order accurate, backwards differ- the equations for the preform and fiber were solved, and the
ence in time, i.e., an implicit method. The resulting set whole iterative cycle was repeated until convergence was
of linear algebraic equations was solved by means of LU- achieved. Note that, in addition to the global (outer) iterative
decomposition upon using the interface boundary conditions procedure, inner iterations were preformed to determine the
at Ro(x, t). Sincegy andg, have to be determined as part fluid and/or thermal fields in the preform, the fiber and the
of the solution, they were treated as source terms and it-gases surrounding the fiber until their respective governing
erations were preformed until convergence was achieved.equations converged. This inner-and-outer iterative proce-
This iterative Picard procedure has the advantage that thedure was found to converge rapidly for the case of optical
LU-decomposition is determined only once, although the fibers where the temperature differences are not very large,
method exhibits only a linear rate of convergence. but was found to be rather slow when the temperature differ-
The one-dimensional equations for the hollow, compound ences are large. In this case, it may prove to be more efficient
fiber geometry, axial velocity, and temperature when the to solve all the equations simultaneously and employ a New-
Biot number is @¢2), were also discretized by means of a ton method rather than the Picard algorithm employed in this
control-volume formulation and first-order backward differ- study. It must be noted that, in all the calculations presented
ences in time, second-order accurate finite differences forin this paper, no gases were assumed to be enclosed by the
the diffusion terms, and upwind differences for the con- fiber's inner surface, i.eq; = 0.
vection ones, and the resulting system of nonlinearly cou- The time step employed in the calculations was varied
pled equations was solved iteratively until convergence was from 0.1 to 0.001 in order to ensure time-step independent
achieved. results, whereas the number of grid points employed in the
For Biot numbers of order of unity, the hollow, com- radial and axial directions was also varied to obtain almost
pound fiber is governed by one-dimensional equations for grid-independent results.
its geometry and axial velocity component, whereas the In the calculations reported here, the grid spacing in the
fiber's temperature is governed by two-dimensional equa- gases surrounding the fiber was constant inatlandr di-
tions which use the leading-order axial and radial velocity rections, and the number of grid points in these directions
components determined in the asymptotic analysis describedvas 500 and 50, respectively. Calculations were also pre-
previously. In this case, we also employed a control-volume formed with unequally-spaced grids in théirection which
formulation, backward differences in time, upwind dis- concentrate the grid points near the preform and at fiber's
cretizations for the convection terms, and central differences outer surface, but it was found that a 5060-point equally-
for the diffusion processes, and the system of nonlinearly- spaced grid provides results within 1% of those obtained
coupled equations was solved iteratively until convergence with the unequally-spaced grid. Convergence within the time
was achieved. step was assumed to occur when the residuals of the momen-
In both the incompressible and the compressible gas casesum and energy equations were equal to or less thaf.10
considered in this study, the governing equations for the must be pointed out that the time-dependent equations were
gases were discretized in control volumes using a staggeredhlso used to determine the steady state solution because the
grid where the scalar variables were determined at the cen-discretization of the time derivatives increases the diagonal
ters of the control volumes, while the velocity components dominance of the discretized equations.
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4. Results in order to assure that the melting temperature was reached
atL,. Inreal optical fiber drawing processes, one should ac-
The models presented in previous section have been useaount for the heating/cooling part of the preform outside the
in the heating region and in the cooling region (cf. Fig. 1). furnace which is also governed by the heat conduction equa-
In the heating region, the coupled model was used to deter-tions employed to determine the temperature of the preform
mine the temperature distribution in both the preform and within the furnace in the formulation presented in this paper.
the fiber (cf. Fig. 3) by means of the coupled model dis-  For the conditions described above, emissivities of the
cussed before, while, in the cooling region, only the one- fiber, irises and furnace vertical walls equal to 0.90, 0.75
dimensional model was employed. It must be emphasizedan 0.75, respectively, temperatures of the top and bottom
that the coupled model considers the two-dimensional tem-irises equal to 2000C, and a parabolic temperature of the
perature distribution in the preform, whereas the fluid dy- furnace’s vertical wall which exhibited a relative maximum
namics and heat transfer of the fiber are analyzed by meansqual to 2500C at midheight and had a value of 200D
of the one-dimensional model. Moreover, since the formula- at the corners between the furnace cylindrical wall and the
tion presented in this paper can be applied to both silica andirises, it has been found that forced convection is much more
polymer optical fibers, we have performed simulations with important than free convection, and errors of less than 1%

the coupled model for silica optical fibers. were incurred by neglecting the gravitational term in the
momentum equations for the gases surrounding the hollow,
4.1. Results of the coupled model compound fiber. This is not surprising in glass optical fibers

where the furnace temperature and the take-up velocity are
We shall first describe the results obtained with the cou- high. This comment may not apply to polymeric optical

pled model that includes radiative heat exchanges in thefibers that are drawn at lower temperatures and axial veloc-
furnace, convection in the gases that surround the preformities, and, therefore, free convection may be as important as
and fiber, and the one-dimensional equations for the hollow, or more important than forced convection. The same com-
compound fiber's geometry, axial velocity component and ment also applies to the drawing of conventional glass or
temperature. This coupled model requires very long com- textile fibers where cooling gases are forced in a direction
putational times to achieve convergence for the conditions perpendicular to the fiber's axis.
described below and the grid size and time step discussed The motion of the gases surrounding the fiber exhibited
above. For example, a simulation using the Boussinesq ap-complex features, i.e., recirculation zones, characterized by
proximation required 36 hours 25 minutes of CPU time in downward motion along the fiber, upward motion along the
a two-processor 600 MHz HP J5600 workstation, whereas afurnace vertical wall, and horizontal motions along the irises
similar simulation with the compressible flow equations for ortop and bottom walls of the furnace. The gas motion along
the gases surrounding the preform and hollow, compoundthe top iris was inwards whereas that along the bottom one
fiber required 62 hours 11 minutes of CPU time in the same was outwards, and regions of high vorticity were observed
workstation. Due to the long computational times required at the corners of the furnace.
by the coupled model, only four simulations were performed  For the conditions described above, the recirculating flow
with this model. Two of these simulations were carried out patterns in the gases surrounding the fiber were found to
with the incompressible flow approximation for the gases be nearly steady ones when the Boussinesq approximation
surrounding the fiber with and without the Boussinesq ap- was used in the axial momentum equation. Calculations per-
proximation in order to determine the importance of natural formed with the compressible equations were not found to
or free convection. The other two simulations were carried differ much from those obtained with the Boussinesq ap-
out by assuming that the gases that surround the hollow,proximation, except near the corners and hot irises and fur-
compound fiber are compressible, and either consideringnace wall, although the compressible flow model was found
or neglecting the gravitational term in the axial momentum to require much longer computational times as stated above.

equation. For the conditions considered in this paper, it was ob-
Unless otherwise stated, the calculations reported in thisserved that radiative heat exchanges accounted for about

section correspond to pure silicay =30 cm, R1(0, 1) = 71% of the total heat exchanges, whereas convective ones

0.5cm,R(0,7) =0.75 cm,Ry(1,¢t) =1 cm, L, = 10 cm, accounted for about 29%. These values represent averaged

take-up speed of 300 csT!, a melting temperature of quantities along the fiber, and indicate that radiative heat ex-
1900 K andTex = 1373 K, and a draw ratio, i.e, the ratio of changes are more important than convective ones; however,
the axial velocity at the take-up point to that at the preform’s the latter cannot be neglected. Most importantly, however,
tip, i.e., atx = L, equal to 100. In addition, the reference is the fact that the fiber geometry obtained with the cou-
temperature used in the calculations is that corresponding topled model under these conditions was quite similar to that
the melting point, and the properties of the gases in the fur- observed with only the one-dimensional model for the hol-
nace were assumed to be constant and equal to those of aitow, compound fiber using a constant Biot number equal
Note that the temperature at which the preform was fed into to 85. In fact, it has been observed that for the same condi-
the furnace was determined numerically by trial and error tions as those considered in the next subsection, the coupled
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model provided analogous results to those of only the one-  The results presented in Figs. 5 and 6 exhibit similar
dimensional model for hollow, compound fibers when the trends to those of Figs. 57 of Lee and Jaluria [11] despite
latter employed an adequately chosen constant Biot numberthe differences in the preform and fiber geometry and the fact
Fig. 5 (top) shows the temperature at the outer surfacethat these authors did not consider the motion of the gases
of the preform and fiber as a function of the axial distance that surround the preform and fiber, although they accounted
along the furnace. This figure indicates that the fiber's sur- for the fluid dynamics of the melt in both the preform and

face temperature increases from approximately a value ofthe fiber by means of a stream function-vorticity formula-

0.8 atx = O to about 1.06 at about = 0.42 and then de-  tion. Lee and Jaluria[11] also considered a solid core optical
creases until reaching a zero gradient at the furnace exit, i.e. fioer- However, these authors predicted higher surface tem-
x = 1. Fig. 5 (top) also indicates that, if the one-dimensional Peratures than the ones reported in Fig. 5 of this paper. In
model for the fiber is used with a Biot number equal to 85 addition, the fiber temperature at the furnace exit was almost
the temperature predicted by this one-dimensional model isequal tq th? merng temperatgre, whereas t'he results' pre-
slightly higher than if the same model accounts for the de- sented in Fig. 5 indicate that., in our calculations, the fiber

tailed convective an radiative heat exchanges between thetemperature atthe furnace exitis lower than the melting tem-

fiber and the f I perature.
toer and the Turnace walls. ) Although the coupled model presented here can be used
Fig. 5 (bottom) shows that the difference between the

L to study time-dependent phenomena, only steady calcula-
temperature at the compound fiber’s surface and that at thetions have been reported, even though the unsteady for-

inner one first increases and then decreases and tends to @, ,1ation was used to determine the steady state solution,
nil value along the furnace, and that this difference is small. pecayse it was found that, due to the nonlinear coupling
This figure also illustrates the fast increase in the preform petween radiation and convection, the discretization of the
temperature as it enters into the furnace. time-transient terms helped to accelerate the convergence of

Fig. 6 iIIus:traFes the preform and fiber geometries in the the iterative technique employed in these studies.
furnace. As indicated before, the preform was assumed to  During the review process of this paper, further simula-

be rigid and preserves its diameter uprte- L, = 0.3. The tions with the coupled problem were performed in order to
hollow, compound fiber’s radii decrease in an almost expo- determine the effects of the emissivities of the fiber, preform,

nential manner foL , <x < Ly. irises and furnace wall on the fiber's geometry. These simu-
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Fig. 5. Nondimensional temperature of the fiber's outer surfé¢gp)/ 7, , (top) and difference between the temperature of the outer and inner surfaces of the
hollow, compound fiberT (R2) — T (R1))/ T, (bottom) as functions of the nondimensional axial distance along the furnace. (Coupled model with detailed
analysis of radiative and convective exchangesoupled model with a constant Biot approximation for the one-dimensional model of theofiper:
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Fig. 6. Nondimensional geometry of the fiber as a function of the nondimensional axial distance along the furnace. (Solid line: inner surfadegdashed |
interface between the inner and outer materials; dashed—dotted line: outer surface.)

lations indicate that the emissivities play a paramount role in Table 2

determining the heat exchange processes and the fiber fluidvalues of parameters
dynamics. An important role in the heating process taking rigyre £,
place in the furnace is also played by the temperature of the

Ep Peg Pe B ko/ky  S2/%1

irises and furnace wall, and the necking location was found 100 100 100 100 - var 1 !

to be strongly affected by the thermal boundary conditions. & var. 100 100 100 10 1 1

This has important consequences on the stability and con- 2 100 var. 100 100 10 1 1

trol of the manufacturing of optical fibers. More importantly, 10 100 100 100  var. 10 1 1

however, is the fact that, in all of these cases, the coupled11 100 100 100 100 10 var. 1

model provided analogous results to those of only the one- 12 100 100 100 100 10 1 var.

dimensional model for hollow, compound fibers when the

latter employed an adequately chosen constant Biot number

(cf. Fig. 5 (top)). served under isothermal conditions [6]. Since these results
are of relevance to both conventional and optical fiber draw-

4.2. Results of the one-dimensional fiber model ing processes, it must be emphasized that there is no preform

in the former and that the coordinatethat appears below

We shall next report some steady state results obtainedrefers to the axial location measured from the die’s exit and
with only the one-dimensional model for hollow, compound the melting point of the preform for conventional and op-
fibers without taking into consideration the motion of the tical fiber drawing processes, respectively. In addition, we
gases surrounding the fiber, and using constant Biot num-shall use the term “die exit” to refer to the true die exit in the
bers, i.e.}11 andh, are assumed constant. As stated above, case of conventional fiber drawing processes or the location
this one-dimensional is valid in the cooling region. Note that, where the preform melts in the case of optical fiber drawing.
if the preform’s length is much larger than its characteristic ~ Fig. 7 illustrates the effects di. for the conditions of
radius, the preform is slender and its temperature equation isTable 2 and indicates that the temperature drop increases as
analogous to that derived for the hollow, compound fiber.  the Biot number is increased. This temperature drop results

The first results shown in this section are relevant to in a large increase in the dynamic viscosity of the materi-
both melt spinning for; < x < x2 and optical fiber draw-  als that compose the fiber, and a necking phenomenon near
ing processes fol., < x < Ly, correspond to a nondi- the die’s exit whose magnitude increases as the Biot number
mensional temperature and axial velocity component of the is increased. Fig. 7 also shows that, at large Biot numbers,
fiber at the die equal to one, a take-up speed equal to 100the increase in dynamic viscosity results in an almost con-
R=F=C=o0/op=01/00 =51/So =ko/ky =1, h1 = stant axial velocity beyond the necking region, and that the
Pin — Pex = Bex = 0, R(0) = 1, R1(0) and R2(0) can be temperature drop for the largest Biot number considered in
determined from the conditions that the (nondimensional) the figure is about 18%. The reader is cautioned that the
volumetric flow rate for the inner and outer annular jets is results presented in Fig. 7 as well as in the other figures pre-
0.5, and consider the effects of the activation energieand sented in this paper are nondimensional, i.e., the radii and
E», Péclet number and Biot numbBi, on the hollow, com- axial length have been nondimensionalized with respect to
pound fiber drawing process, since the effects of the pressureRg andL = L  — L, respectively, and thako/L = ¢ <« 1,
difference, Reynolds, Froude and capillary numbers, sur- and, therefore, the necking in dimensional coordinates does
face tension ratios, fiber's radii at the die and volumetric not occur as close to the die as the results presented in Fig. 7
flow rates were found to exhibit similar trends to those ob- seem to indicate.
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The effects of the (nondimensional) activation enefgy decreases. Similar results to those of Fig. 10 have also been
on the fiber geometry, velocity and temperature are shownobserved wheiPe; was varied.
in Fig. 8 and indicate that, for the parameters considered The results presented in Fig. 10 indicate that, at large
in this figure, the effects oF; are small. In addition, the  thermal Péclet numbers, the fiber's geometry is like that
axial velocity, temperature and the dynamic viscosity at a observed under isothermal conditions [6] and exhibits an
given axial location increase d§ is increased. The appar- axial gradient different from zero at the take-up point, i.e.,
ent paradox for the temperature and viscosity shown in Fig. 8 at x = 1. On the other hand, heat transfer effects are im-
is a consequence of the values of the parameters used in theortant for Péclet numbers less than or equal to 100 and
calculations and the fact that the fiber's geometry and the the fiber exhibits a necking phenomenon the magnitude of
momentum equation are controlled by the viscosities of both which increases as the Péclet number is decreased. Although
the inner and outer materials. In Fig. 8, the main contribu- not shown here, similar results to those presented in Fig. 10
tion to the momentum diffusion is associated with the outer have also been observed whes was varied.
material whose viscosity increases much more rapidly than  Fig. 11 exhibits the effects df/k; on the hollow, com-
that of the inner wheiE, > E1. This point is emphasized in  pound fiber and indicates that, as this ratio is increased, the
Fig. 9 which shows that the effects B on the fiber geome-  necking region moves toward the die’s exit, the axial velocity
try, axial velocity component and temperature are analogouscomponent and dynamic viscosity increase and the temper-
to those ofE1; however, the effects of» on the dynamic ature decreases. For small thermal conductivity ratios, the
viscosity of the inner material are opposite to thos& of fiber temperature decreases slowly along the fiber and the

The effects ofPe, are exhibited in Fig. 10 that shows axial velocity has similar trends to those observed in isother-
that the axial velocity profile, temperature, geometry and dy- mal melt spinning processes. Note that the axial velocity is
namic viscosity of the inner material are strong functions of almost linear fokky/k1 = 1.
the Péclet number for the outer material. Fig. 10 also shows The effects 0fS,/S1 on the fiber dynamics are small as
the changes in the concavity of the axial velocity profile as shown in Fig. 12 which indicates that the axial velocity and
functions ofPe,. Note that, as the magnitude of the Péclet temperature increase as this ratio is increased. One might
number is increased, the magnitude of the convection termshave expected the opposite trend; however, the raklio$
in the energy equation increases and the cooling of the fiberthe interface between the two materials of the fiber depends
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Fig. 12. Steady state fiber's geometry (top left), axial velocity component (top right), temperature (bottom left) and viscosity of the inné(butiteria
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in a complex manner on the viscosity ratio as indicated in for the geometry, axial velocity component and tempera-
Egs. (45) and (48). ture along the fiber for small Biot numbers. At high Biot
Transient calculations were also performed with the one- numbers, the geometry and axial velocity component of the
dimensional model in order to analyze the dynamic responsefiber are governed by one-dimensional equations that depend
of the hollow, compound fiber to sinusoidal time-dependent on the cross-sectional averages of the dynamic viscosity,
volumetric flow rates and temperature at the die and at thewhile the temperature field in the fiber is governed by a two-
take-up point. The results of these calculations which use dimensional energy equation.
constant or space-dependent Biot numbers, show that non- The model neglects latent heat effects associated with the
isothermal fibers are more stable than isothermal ones, andnelting of the preform and the fiber melting/solidification,
the critical take-up velocity ratio at which the draw reso- and uses a Newtonian rheology, but employs a dynamic
nance of isothermal fibers is observed can be substantiallyviscosity law that increases exponentially as the tempera-
exceeded without the fiber losing its stability. This is not ture drops below its melting point. It also includes either a
to say that draw resonance does not occur in nonisothermalBoussinesq approximation in the momentum equations or
fibers, rather, if it does occur it takes place at higher take-up a compressible formulation for the gases that surround the
speeds than under isothermal conditions. fiber. In either case, the models for the preform, fiber and
gases surrounding the fiber are solved separately and itera-
tively until convergence is achieved, and the radiative heat

5. Conclusions transfer model assumes that the fiber has a conical shape,
and nonpatrticipating gases.
A coupled model for the study of hollow, compound opti- Simulations with the coupled model that accounts for

cal fiber drawing processes has been developed. The modefadiative heat exchanges and the motion of the gases sur-
accounts for the heat transfer in the preform and fiber and rounding the preform and fiber show that, for the conditions
for the motion of the gases surrounding the preform and presented in this paper, radiative heat exchanges are about
fiber by means of two-dimensional equations, employs a three times larger than forced convection effects, free con-
net radiative heat exchange model for the radiative heat ex-vection is not important, and the fiber's geometry, axial ve-
changes amongst the preform, fiber, irises and furnace walls locity and temperature predicted by the coupled model are
and uses asymptotically-derived one-dimensional equationsin remarkable good agreement with those obtained with the
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one-dimensional model for hollow, compound fibers and a this paper to this journal. The author is also grateful to the
suitable constant Biot number. referee for his comments that have resulted in both an im-
Calculations performed with the one-dimensional hollow, provement of the presentation and the elimination of some
compound fiber model by itself using a constant Biot number errors.
along the fiber indicate that, as the Biot number is increased,
the heat losses and the fiber’s dynamic viscosity increase, the
fiber exhibits a strong necking phenomenon and the fiber's References
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